Detect the volume of the input video.
The filter has no parameters. The input is not modified. Statistics about the volume will be printed in the log when the input stream end is reached.
In particular it will show the mean volume (root mean square), maximum volume (on a per-sample basis), and the beginning of an histogram of the registered volume values (from the maximum value to a cumulated 1/1000 of the samples).
All volumes are in decibels relative to the maximum PCM value.
Here is an excerpt of the output:
[Parsed_volumedetect_0 0xa23120] mean_volume: -27 dB [Parsed_volumedetect_0 0xa23120] max_volume: -4 dB [Parsed_volumedetect_0 0xa23120] histogram_4db: 6 [Parsed_volumedetect_0 0xa23120] histogram_5db: 62 [Parsed_volumedetect_0 0xa23120] histogram_6db: 286 [Parsed_volumedetect_0 0xa23120] histogram_7db: 1042 [Parsed_volumedetect_0 0xa23120] histogram_8db: 2551 [Parsed_volumedetect_0 0xa23120] histogram_9db: 4609 [Parsed_volumedetect_0 0xa23120] histogram_10db: 8409
It means that:
-
The mean square energy is approximately -27 dB, or 10^-2.7.
-
The largest sample is at -4 dB, or more precisely between -4 dB and -5 dB.
-
There are 6 samples at -4 dB, 62 at -5 dB, 286 at -6 dB, etc.
In other words, raising the volume by +4 dB does not cause any clipping, raising it by +5 dB causes clipping for 6 samples, etc.